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When we generalize to the lattice quantizer case we have to 
replace G ,  = 1/12 by G, and get (33). 

Consider now distortion measure of the form I x 1 ‘. In this case 
E( I X I ‘} 5 E and E{ 1 N I ‘} = E = A‘/(r + 1)2‘. The noise en- 
tropy can be written in this case as 
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or 2”(” = a2 = 4[(r + l)el2/‘. 
The lower bound is easily found by substituting the Source x* 

that maximizes the entropy under the rth moment constraint. The 
entropy of such a source is given by 

(53’ 

Thus, the channel capacity is lower bounded by 
[9] 

1 
c r - l o g  2 [ i + r 2  ( I + -  :) ’ ( $ ) 2 ’ r ]  = ‘/, (54) [IO] K. Sayood, J .  D. Gibson, and M. C. Rost, “An algorithm for 

which takes the values 0.755,0.638,0.595; . ., 0.5 for r = 
1,2,3; . ., W. 

The upper bounding technique is slightly more complicated and 
the bound we get may be loose since we cannot easily get moments 
constraints on the output random variable Y .  We can only bound the 
rth moment using Holder’s inequality, 

A Note on the Competitive Optimality of the 
Huffman Code 

The maximum entropy of the output under this rth moment con- 
straint is given by (53) where we substitute 2‘e for E .  Thus we get 
the upper bound 

where C, takes the values 1.44, 1.254, 1.180,. . . , 1 for r = 
1,2,3;. * ,  03. We see immediately that this upper bound is loose at 
least for r = 2. It can be tightened for even r ,  i.e., r = 2 p .  In this 
case, we can use the fact that the odd moments of N are zero and 
get 

which improves (56) by l l r  and so we get 

c 5 - 1 log [ e  . 2‘-’ . .‘( 1 + +) . *] = c,, 
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Abstract-It is known that a bound on the probability that the length 
of any source code will be shorter than the self information by y bits 
can be obtained using a Chebychev-type argument. From this bound, 
one can establish the competitive optimality of the self information and 
of  the Shannon-Fano code (up to one bit). In general, however, the 
Huffman code cannot be examined using this technique. Nevertheless, in 
this correspondence the competitive optimality (up to one bit) of the 
Huffman code for general sources is also established using a different 
technique. 

Index Terms-Competitive optimality, Huffman code, self informa- 
tion, Chebychev inequality. 

I. INTRODUCTION 

Given the probability of a source one can design a uniquely 
decodable (UD) source code that minimizes the expected code- 
length. This expected code length must be, of course, greater than 
the entropy of the source. The optimal code in this sense would 
assign to each outcome x a codeword of length -log p ( x ) ,  the self 
information, and its expected length would exactly be the entropy. 
(Throughout the correspondence log x = log, x.) However, the 
self information may not be an integer. Incorporating the Diophan- 
tine constraints, it is well known that the Huffman code minimizes 
the expected codelength. 

r = 2 p .  (58) Manuscript received August 7, 1990; revised May 24, 1991. This work 
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Note that C, now takes the values 0.754,0.888,. . . , 1 for r = 

2 ,4 ; . . ,w .  
Similar results have been obtained in [2] for the bounds there. 
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In some applications, one may be interested in the competitive 
optimality of the code (a term originally expressed and investigated 
in [l] and [2 ] ) ,  i.e., in comparing two source codes by the probabil- 
ity that the codelength of one scheme will be shorter than the 
codelength of the other scheme. In [ I ]  and [2 ] ,  it was shown that the 
self information is also optimal in this respect for dyadic sources in 
which the values of the self information are integers for all source's 
outcome. For nondyadic sources, the Shannon-Fano code, whose 
length for each outcome is bounded by the self information plus 
unity, was shown to be competitively optimal within one bit. The 
Huffman codelength, however, cannot be bounded in terms of the 
self information for every outcome and so no claim about its 
competitive optimality could have been made using the techniques 
of [2 ] .  In this correspondence, it is shown, by a different technique, 
that the Huffman code is also competitively optimal within one bit. 

The properties of the self-information and Shannon-Fano code 
are rederived in the next section. The Huffman code and its competi- 
tive optimality are discussed in Section 111. 

11. THE COMPETITIVE OPTIMALITY OF THE SELF INFORMATION 

Let x = x ,  . . . x ,  be a sample outcome of length n of a general 
discrete source. Let Q be the sample space ( a  = (0, 1)" for binary 
source) and let the probability p(  x )  be given for all x E 0. Denote 
the self information L:( x) = - log p(  x) and denote by L,( x) the 
codelength associated by any UD code to the outcome x. The 
following theorem, which appeared, for example in [3] ,  is similar to 
the result in [ l ]  Section VI and provides an upper bound for the 
probability that the codelength L, (x )  of an arbitrary UD code is 
shorter by y bits than the self-information. It is derived via an 
argument used in Chebychev-type inequalities. 

Theorem I (Baron, Cover, and others): 

Proof: The lengths of any code that satisfy Kraft's inequality 
can be presented as L , ( x )  = -log q(x) ,  where xXsn q ( x )  = 
Expn 2-Ln(x) I 1. Thus, 

Pr {L,(x)  I L * , ( x )  - y} = Pr {log q ( x )  2 log ( 2 y p ( x ) ) }  

= P r { q ( x )  > 2 Y p ( x ) } .  

Denote the event A ,  = { x I q( x) 2 2,p( x)}. For x E A , ,  p(  x) 
I 2- ,q (x ) ;  thus 

I 2 - y q ( x )  I 2 - ,  q ( x )  5 2 - , .  
4 n 

0 

Theorem 1 establishes another sense in which the self information 
is the optimal codelength. To emphasize this optimality even fur- 
ther, consider the following corollary. 

Corollary: For any fixed 6 > 0, the codelength, per symbol, of 
any UD code satisfies 

The corollary is proved by choosing y = n6 in Theorem 1. Note 
that for any stationary and ergodic process, with probability 1, 
limn+- - n- '  log p ( x )  = H ,  the entropy of the source. We note 
the exponential decay of the probability in (2) for any 6 > 0, and 
point out that it is proved for every n and every source using a 
simple Chebychev-type argument. Note that similar optimality re- 
sults in the context of gambling and investment are also known, see 
e.g., [ l ,  Section 171, [4], [5], and more. 

As previously noted, a result similar to Theorem 1 was provided 
in [l], Section VI. There, the codelength of any code was compared 
to the codelength of the Shannon-Fano code, which is [ -logp( x)1 . 
Indeed, when we consider any "approximately optimal" code whose 
codelengths, L:( x) ,  are integers satisfying 

L:(x) < L * , ( x )  + 1 = -log p ( x )  + I ,  forall x ,  ( 3 )  

e.g., the Shannon-Fano code, we get, using ( 3 )  and ( I ) ,  

where L , ( x )  is the length associated with an arbitrary code. Now, 
since both L:(x)  and L,(x) are integers, we get for any integer y 
and for all codes satisfying ( 3 ) ,  

= Pr { L u , ( x )  2 L , ( x )  + y + l}  I 2 - 7 ,  ( 4 )  

which is the result in [ 13. Note that for y = 1, 

P r { L : ( x ) > L , ( x ) + l }  I + I P ~ ( L : ( x ) I L , ( x ) +  I } ,  

( 5 )  

that is, the Shannon-Fano code most of the time provides a code 
that is shorter (up to one bit per block, or l / n  bits per symbol) than 
any other competing code. 

Another result presented in [2] and [ I ]  considers the case where 
the source is dyadic, i.e., L*,( x)  = -log p(  x)  is an integer for all 
x. In this case, the Huffman codelength, as well as the Shannon-Fano 
codelength, is the (integer) self-information L*,( x). Using Theorem 
1 and incorporating the fact that all lengths are integers, we get 

Pr { G ( x )  2 + r} 
= p r { L * , ( x )  > L , ( x ) + y -  

for any integer y. For y = 1, 

Pr{L*,(x)  > L ( x ) }  < t < P r { L * , ( x  

For y = 1 a stronger result may be stated. Denote the probability of 
the event {L*, (x)  = L , ( x ) }  by Q. For dyadic sources, we get 



438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992 

where L ( x )  = -log g(x). Using these arguments, 

1 1 - Q  c 
2 { X I  P ( X ) < : q ( X ) / 2 )  

Pr { L*, (x)  > L(  x)}  5 - 4 x 1  5 2 ’  

where the last inequality follows since 

On the other hand, 

Pr{L*,(x)  < L ( x ) }  = 1 - Pr{L*,(x)  > L ( x ) }  - Pr{L*,(x)  

1 - Q  
= L ( x ) }  2 - 

2 (9) 

Thus, combining (8) and (9), 

Pr{L*,(x) >L(x)} s P r { L * , ( x )  < L ( x ) } .  (10) 

This result is stronger than (7) since the event in the right-hand side 
does not include the case L*,(x) = L , ( x ) .  It also appeared origi- 
nally, with a different proof, in [ 2 ] .  

Unfortunately, we cannot prove (4) and (5) for the Huffman code 
in the nondyadic case following Theorem 1 .  Nevertheless, we show 
in the next section through a different technique that the Huffman 
code is also competitively optimal within one bit. 

III. THE COMPETITIVE OPTIMALITY OF THE HUFFMAN CODE 

The Huffman code minimizes the expected codelength for a given 
source under the constraint that the lengths are integers. It is well 
known that E { L H ( x ) }  < E{ -log p ( x ) }  + 1 = H + 1. This does 
not imply, however, the bound (3) on the length of each outcome. 
An example of a source whose Huffman codelengths do not satisfy 
(3) (due to [6]) is the source with an infinite (countable) number of 
outcomes, xo, x,, . . . whose probabilities are given by, 

P ( x o )  = 1 - a 

P ( X l )  = (1 - a ) a  

P ( x ; )  = ( 1  - a ) a f .  

& - I  
F o r + s a < - -  - 0.618 (the golden number) the Huffman 

codebook, for the previous source, is (1, 01, 001, OOO1, . - .  }. 
Clearly, in this codebook the codelength assigned to the symbol x i ,  
denoted L H ( x f ) ,  is i + 1. On the other hand -log p ( x i )  = 
-log ( 1  - a)  + i . - log a. Since, for any $< a < 0.618, 
- log a < 1, we can find j such that for any i 2 j ,  L H ( x i )  > 
- log p (  x i )  + 1. Additional discussion on the Huffman code for a 
geometric distribution on an infinite alphabet can be found in [7]. 

As a side remark we note that an upper bound on the lengths of 
the Huffman code, which is weaker than (3), can be derived. This 
bound states that 

2 

1 1 
where n is such that - > p ( x )  5 - and F, = 1, 2 ,  3, 5, 

8, . .. for n = 1, 2, . .. is the Fibbonaci sequence. This bound 
follows from the sibling property of the Huffman code, [8]. This 
bound appears e.g., in [9]-[ll], and for completeness it is also 
derived in the Appendix. 

Now, despite the fact that for some input symbols the Huffman 
codelength can be much longer than the self information, it is 
competitively optimal within one bit, as shown in the following 
theorem. 

Fn F n + l  

Theorem 2: Let L ( x )  be the length of the code associated with 
the symbol x by an arbitrary UD code. Let L H ( x )  be the Huffman 
codelength of the symbol x. Then, 

P r { L ( x )  C L ~ ( X )  - 1) < P r { L ( x )  > L ~ ( x )  - I } .  (12) 

Proof: Let A be the set of source symbols { x I L ( x )  < 
L H ( x )  - 1}, B the set { X I  L ( x )  = L H ( x )  - 1}, and let C be the 
set { x I L ( x )  > L H ( x )  - 1) .  Note that the competing code is 
shorter than the Huffman code, i.e., L ( x )  < L H ( x )  for symbols in 
A and B ,  while L(x)  2 L H ( x )  for symbols in C. 

Reconstruct a new code, whose length function is denoted by 
L ’ ( x ) ,  as follows. Use the competing code whenever it is shorter, 
i.e., in A and B ,  use the Huffman code otherwise, i.e., in C, and 
add a one bit prefix to indicate which code is used. Clearly this code 
is uniquely decodable. For symbols x E A  the length of this code 
satisfies L’(x)  < Ln(x)  - 1 + 1 = L”(x),  or since the lengths 
are integers L’(x)  I L H ( x )  - 1 .  For symbols x E B  we have 
L’(x)  = L H ( x )  - 1 + 1 = L H ( x ) .  For symbols x E C the code is 
identical to the Huffman code plus a one bit prefix and thus 
L’( x) = LH( x) + 1. Thus, the expected length of this code satisfies 

By reconstruction, the binary tree representing the codebook 
associated with L’(.) is incomplete. Thus, there is a length function 
L”( * ) of a uniquely decodable code such that E{ L”} < E{ L’}, and 
so E{L”} < E { L ~ }  + pr(C)  - Pr(A) ,  or, 

Since the Huffman code minimizes the expected code length, 
E{L”} - E { L H }  2 0, and so Pr(C) > Pr(A) ,  i.e., 

P r { L ( x )  > L ” ( x )  - 1) > ~ r { ~ ( x )  < L ~ ( x )  - I} .  O 

Note that as compared to what can be stated for the Shannon-Fano 
code, this result (12) on Huffman code, proved in Theorem 2, is 
stronger than (5) but less general than (4). 
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APPENDIX 
PROOF OF (1 1) 

Let x be a source symbol whose probability is p ( x )  and its 
Huffman code length is L H ( x ) ,  i.e., it is represented by a leaf at 
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level L H ( x )  at the Huffman code tree. Thus, at level L H ( x )  - 1 of 
the tree the node that this leaf descends from has a probability 
greater than p ( x ) ,  and by the sibling property its sibling has a 
probability of at least p ( x ) .  Thus, the probability of the node where 
the two siblings descend from, at level L”(x)  - 2, is greater than 
2 p ( x ) ,  while its sibling has a probability of at least p ( x ) .  At the 
previous level (LH(  x )  - 3) the probability of the node where this 
subtree descends from is greater than 3p(  x )  while its sibling has a 
probability of at least 2 p ( x ) .  We immediately see that the probabil- 
ity of the node at the ( L H ( x )  - n)th level, where this source leaf 
descends from, is greater than F, . p (  x), where F, = F,- , + Fn-2 
is the Fibbonaci sequence. The root, which will be at level 0 = 
L”(x) - L H ( x )  must have a probability greater than F L ~  . p ( x ) .  
Since the root probability is 1, we must have 1 > F L ~  * p ( x )  which, 
together with the requirement that the codelength is an integer, leads 
to ( 1  1). 0 

r11 

t21 

[31 

[41 

t51 

[61 
171 

P I  

r91 

REFERENCES 
T. M. Cover and J. A. Thomas, Elements of Information Theory. 
New York: Wiley, 1991. 
T. M. Cover, “On the competitive optimality of Huffman code,” 
IEEE Trans. Inform. Theory, vol. 37, pp. 172-174, Jan. 1991. 
A. R. Barron, “Logically Smooth Density Estimation,” Ph.D. thesis, 
Stanford Univ., Stanford, CA, 1985. 
P. H. Algoet and T. M. Cover, “Asymptotic optimality and asymp- 
totic equipartition properties of log-optimal investment,” Annals 
Probab., vol. 16, pp. 876-898, 1988. 
R. Bell and T.  M. Cover, “Competitive optimality of logarithmic 
investment,” Math. Oper. Res., vol. 5, no. 2, pp. 161-166, 1980. 
T. M. Cover, private communication. 
R. G. Gallager and D. C.  Van Voorhis, “Optimal source codes for 
generally distributed integer alphabets,” IEEE Trans. Inform. The- 
ory, vol. IT-21, pp. 228-230, 1975. 
R. G. Gallager, “Variation on a theme by Huffman,” IEEE Trans. 
Inform. Theory, vol. IT-24, pp. 668-674, Nov. 1978. 
G .  0. H. Katona and T. 0. H. Nemetz, “Huffman codes and self 
information,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 

K. C. Chu and J. Gill, “Upper bounds on Huffman codewords 
lengths,” in Proc. IEEE Int. Symp. Inform. Theory, Budapest, 
Hungary, June 24-28, 1991. 
K. C .  Chu, “Lossless data compression and its VLSI 
implementation,” Ph.D. thesis, Stanford Univ., Stanford, CA, 1990. 

337-340, 1976. 

that improves on a previous result of Gilbert. Then, it is shown that the 
redundancy of these constrained codes is very close to that of the 
unconstrained Huffman codes when the number of codewords N is such 
that ND’- becomes negligible. Further, a tight bound is given on the 
redundancy when only the most likely probabilities are known. Finally, 
in the binary case, a tight lower bound is given on the redundancy when 
only the least likely probability is known. 

Index Terms-Limited codeword length, redundancy, bounds on the 
redundancy, optimal codes. 

I .  INTRODUCTION 

In coding theory, it is usually assumed that all the statistics of a 
message source are known with perfect accuracy. This assumption 
seems reasonable as we can measure all statistical parameters accu- 
rately by examining sufficiently long sample messages. If we want, 
thus, to design an efficient code for a message source S whose letter 
probabilities are not known, we can use a two-stage procedure. First 
we determine the relative frequencies f ,  , f ,  , . . . , f N  of the letters 
of S ,  using a fairly long sample message. Then, we design an 
optimal code using such frequencies as the actual probabilities 

There are situations in which the measurements required to design 
increasingly efficient codes for a given source become increasingly 
difficult. If the probabilities needed to design an elaborate code are 
not estimated precisely enough, the elaborate code can be less 
efficient than simpler codes. The knowledge of upper bounds on the 
redundancy of optimal codes in terms of most likely probabilities 
may help to avoid the design of elaborate codes that are only a little 
more efficient than simpler codes. This is particularly true if only 
the probability of the most likely source letter is precisely known 

The underestimation of the probabilities can lead to very long 
codewords which is non desirable (limited buffer, hardware config- 
uration [12], etc.). Thus it may be desirable to design a code with 
limited maximum length. 

Therefore, instead of constructing an efficient code using the 
estimated probabilities p ,  , p z  , . . . , p N ,  a more conservative ap- 
proach is recommended, namely, construct an optimal code, based 
on the estimated probabilities,with the constraint that each codeword 
length is less than or equal to a given maximal length L [8]. 

Given a source S consisting of N letters with probabilities 

PI, P2 ,“ ‘ r  PN. 

111, V I ,  P I ,  and [61. 

On the Redundancy of Optimal Codes with Limited PI? P2,‘  ‘ ’ 2  PN and given an integer ’ O ,  an D-ary 
code with limited (word) length L for S is defined as a D-ary 
code whose N codeword lengths satisfy ni  5 L and minimize the Word Length 
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Abstract-Some limitations are given on the redundancy of D-ary 
codes with maximal codeword length L .  First we give an upper bound 
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redundancy 

where H , ( p , ,  p , , .  . . , p N )  = - 1; I p i  log, p i  is the entropy 
of S. Since the entropy is independent of the code, minimizing (1) is 
equivalent to minimizing the average codeword length E: I p i n r .  

Algorithms for constructing optimal codes with limited word 
length have been investigated in [9]- [ 171. 

Notice that a D-ary code with N codewords and maximum 
length L exists iff N 5 DL. Also notice that the redundancy of an 
optimal code with maximum length L may be larger than the 
redundancy of an optimal (Huffman) code with no constraint. The 
redundancy will be the same if L is less than or equal to the 
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